systematic solutions for concrete problems
for lasting beauty and protection

KEIM Concretal
recommended for all concrete

MasterFormat™ Division 09 - Finishes
(See Back Cover for complete division listings)
Concrete as we know it today has been in existence for more than 100 years. The combination of the compressive strength properties of concrete with the tensile strength of steel has proved outstandingly successful in all areas of construction. Reinforced concrete is made on-site or in a factory using manual methods. As a result, quality and durability are more highly dependent on the care taken during processing than is the case with a “finished” building material. This, together with environmental exposure, is the reason for the issues surrounding concrete decay.

Most notably in the 1950’s, many errors were made in building with concrete due to a lack of awareness regarding the inter-relationships between chemistry, building physics, and structural design. Although these problems are understood today, concrete structures still suffer from improper application, installation, or maintenance requiring remediation. KEIM Concretal offers a precise systematic approach with technical solutions that overcome the complex causes of decay while meeting the aesthetic architectural objectives.

Concrete hardens chemically in a reaction between the clinker and the mixing water resulting in an alkaline 12 to 13 pH environment. In stable highly alkaline concrete, a passivation layer forms on the surface of the steel reinforcing bars that protects the steel from corrosion, despite exposure to oxygen and moisture.

When properly installed, high-quality concrete does not suffer decay other than normal surface weathering. In previous decades, the mechanisms...
1) Applied as water repellent top coat; 2) When used with Silan 100 as the base primer underlying decay were insufficiently understood. Yet today, decay is mostly attributable to errors made in manufacturing, planning, or use. Over time, the calcium hydroxide of the cement reacts with atmospheric carbon dioxide to form calcium carbonate, which increases strength but reduces the alkalinity below 9.5 pH. This is of no significance in high quality concretes with correctly positioned steel reinforcement as the depth of carbonation penetration is only slight and the reinforcement layer is not reached. It has been scientifically demonstrated that in good concrete the carbonation process comes to a complete standstill after a certain amount of time (C-max). In the case of poor quality concretes and inadequate depth of cover, carbonation may reach the reinforcement. Once the alkalinity value falls below 9.5 pH, the passivation layer present on the surface of the steel is lost. If sufficient water is present, rusting may occur on the steel. Since rust has a larger volume than steel, the overlying concrete spalls. Steel corrosion in concrete is an electrolytic process that occurs when sufficient water is present in liquid form. Corrosive damage does not occur in dry areas as the water necessary for electrolysis is not present.

The potential for concrete decay may be introduced during manufacture. Incorrect water-to-cement ratios, poor compaction, leaky shuttering, or insufficient curing cause increased concrete porosity and thus greater permeability to water, oxygen, and carbon dioxide intrusion. In addition, the steel reinforcement is often not carefully set in place. Missing spacers, displaced reinforcement baskets in the shuttering, or warped mats result in inadequate depth of cover leading to rust damage.
Concrete, formerly promoted as lasting “forever”, is not spared from decay. Various environmental pressures, processing or manufacturing errors, design deficiencies or combinations of these factors may result in serious concrete decay. The only way to avoid this decay is to recognize the problem and provide protection in good time.

Even good quality concrete surfaces suffer attack from normal weather over the course of time. The cement paste layer is slowly broken down, shuttering board textures disappear, and pores are opened up, increasing the ease in which water and pollutants penetrate. The surface of the concrete loses aggregate and suffers erosion. Moss and algae begin to grow, deteriorating the appearance and promoting the effects of decay.

The water absorption characteristics of concrete are determined by its porosity. Hairline cracks and rock pockets considerably increase water absorption. High levels of water absorption contribute to structural degradation on exposure to freeze/thaw cycles. For concrete that has become carbonated, water ingress promotes corrosion of the steel reinforcement within. Even worse, water accumulating under impervious plastic or elastomeric coatings accelerates the corrosive damage.
Design faults such as unsealed joints, incorrect handrail attachment, absent or non-functioning drainage, improper expansion joints and the like may also cause considerable decay in isolated areas.

De-icing salts, mainly consisting of chloride salts, are a major hazard to concrete. If sufficient water is present, chlorides may cause serious corrosion damage to the reinforcement even in uncarbonated concrete.

The standards for minimum depth of concrete coverage for steel reinforcement are frequently not observed. Often the reinforcement is much too close to the surface of the concrete. When this happens, corrosion is inevitable even in good quality concrete.

The shortcomings in design, such as unsealed joints, incorrect handrail attachment, absent or non-functioning drainage, improper expansion joints and the like may also cause considerable decay in isolated areas.
concrete diagnosis

assessment of shortcomings and causes of decay

Proper concrete repair requires a thorough investigation of the causes of decay and other shortcomings prior to starting any repair work. From this preliminary investigation, a technically appropriate repair plan guaranteeing a lasting result can be devised.

Important investigation criteria for selecting the ideal protective surface remedies include measuring carbonation depth, measuring the depth of concrete cover, and testing for structurally harmful salts.

The results of these investigations make it possible to distinguish between very different conditions of the concrete, each requiring specific protective surface treatments.

1. good concrete quality, good depth of cover

Carbonation depth amounts to only a few millimeters and does not extend as far as the reinforcement.

Carbonation protection (a CO₂ barrier) is unnecessary, even over a long passage of time.

In good quality concrete, carbonation is slight, coming to a complete standstill over time. This is known as the “maximum carbonation depth”. The reinforcement has lasting protection.

2. moderate concrete quality, shallow depth of cover

Carbonation has almost reached the reinforcement layer. Protection is necessary to stop further progress.

If carbonation is allowed to reach the reinforcement, the protection of the passivation layer will be lost.

If carbonation is stopped, the protection of the passivation layer is retained.
The majority of the reinforcement is within the carbonated zone of the concrete. In this case, carbonation protection would be too late and thus pointless.

The primary goal of surface protection is to protect the reinforcement from corrosion so if the concrete has undergone carbonation through the reinforcement layer, corrosion can only be prevented with combined water-repellency and vapor permeability.

Although carbonation is slight, corrosion occurs due to the influence of chloride. A protective treatment preventing chloride salts penetration is required.

Chloride corrosion may also occur in good quality uncarbonated concrete.

The reinforcement is close to or right at the surface of the concrete; overall the entire area is corroding. Additional cover with spray mortar or shotcrete is required.

This additional material is so thoroughly compacted by the spraying process that it cannot undergo carbonation, therefore carbonation protection is not required.
In principle, a protective solution for concrete surfaces is selected on the basis of the concrete quality and the external stress exposure.

For high quality concrete used in building construction, such solutions focus on weather protection.

In the case of lower quality concrete subjected to severe pollution exposure, protection of the reinforcement from corrosion is paramount.

The grade of protection to apply is determined by analysis of the concrete.

The effect of prolonged exposure to weather degrades the appearance of good concrete. KEIM Concretal W sol silicate coatings are unique in their ability to rectify the concrete’s appearance while maintaining its architectural character and texture. The silicate binder penetrates the surface, chemically reacting to form an amorphous micro-porous mineral structure (silicification). This consolidation strengthens the surface resulting in a long-wearing protective coating providing decades of weathering protection.

Using a systematic approach, the water and chloride salts protection provided by these silicate coatings can be enhanced with an underlying KEIM Silan 100 water-repellent substrate treatment.

KEIM Concretal Lasur is applied to fair-faced concrete to maintain the character while equalizing appearance problems for an “unpainted” look. For water resistance to ASTM E 514, undercoat with KEIM Silan 100.

Further protection against vandalism or soiling may be obtained with the application of KEIM PSS 20 over the top of Concretal W or Concretal Lasur.

Concrete that has deep CO₂ penetration must be sealed in such a way that gaseous CO₂ cannot penetrate further. A coating alone may not be enough to close the pores and blowholes of the concrete surface. Effective protection from CO₂ penetration requires full coverage closure of all pores and blowholes larger than 0.5mm with the proper mineral filler, KEIM Concretal Fine Filler, prior to the application of the silicate coating.

KEIM Concretal C, used in combination with Concretal Fine Filler (when required), provides weathering resistance and an absolute barrier to CO₂. For strong water and chloride salts repellency, undercoat with KEIM Silan 100. The Silan 100 is protected from UV damage by the Concretal C coating, thus the water repellency effect lasts as long as the coating.

Further protection against vandalism or soiling may be obtained with the application of KEIM PSS 20 over the top of Concretal C.
Reinforcement lying in the carbonated zone must be protected to suppress electrolytic corrosion by reducing the moisture content within the concrete. Water moving into the concrete via capillary action, corrosive of itself, may transport corrosive chloride salts as well.

The Concretal system prevents water and rain penetration with strong outward water repellency yet is 77 perms (ASTM E 96) vapor permeable. Water penetrating from behind through defects or joints diffuses out easily.

For opaque solutions, Concretal W and Concretal Grob provide very good water resistance. Combine with an undercoat of Silan 100 for excellent water repellency.

For a translucent or decorative color wash appearance, Concretal Lasur with an undercoat of Silan 100 provides excellent water resistance.

For filling cracks greater than 1mm and closing blow holes, scratch-fill with Concretal Fine Filler before applying coatings.

Apply KEIM PSS 20 for additional protection from vandalism or soiling.

Chloride salts are transported into concrete by water. Preventing water intrusion prevents chloride salt contamination.

The KEIM Concretal coating system prevents penetration of chloride-contaminated water with strong water-repellency. These coatings allow excellent outward vapor diffusion to keep the concrete dry, preventing chlorides that may be present within the concrete from becoming active.

For opaque solutions, pretreat with Silan 100 followed with Concretal W Grob and/or Concretal W for excellent chloride salts resistance.

For a translucent solution or decorative mottled effect, pretreat with Silan 100 followed with applications of Concretal Lasur for excellent chloride salts resistance.

For filling cracks greater than 1mm and closing blow holes, scratch-fill with Concretal Fine Filler before applying coatings.

Further protection against vandalism or soiling may be obtained with the application of KEIM PSS 20 over the top of Concretal W or Concretal Lasur.

Adding an additional concrete layer is necessary for lasting protection. Additional layer thicknesses of 1/2” to 1-1/4” are normally applied by spraying (spray mortar or shotcrete). The impact from spraying compacts the material so densely that with good concrete, virtually no carbonation occurs so additional carbonation protection is unnecessary. A protective surface coating is applied for appearance reasons and for weathering resistance.

Following the established standards for preparing concrete, cleaning or replacing reinforcement, protecting the steel, and building the surfaces back, the proven KEIM Concretal system provides all the materials for both technical and non-technical concrete repairs.

For product application, see KEIM Concretal concrete repair.

systematic solutions
KEIM Concretal W
KEIM Concretal W Grob
KEIM Concretal Lasur
KEIM Concretal Fine Filler
KEIM Silan 100
KEIM PSS 20

systematic solutions
KEIM Concretal W
KEIM Concretal W Grob
KEIM Concretal Lasur
KEIM Concretal Fine Filler
KEIM Silan 100
KEIM PSS 20

systematic solutions
KEIM Concretal MKH
KEIM Concretal Fine Filler
KEIM Concretal Mortar R
KEIM Concretal Universal Mortar
KEIM Concretal W
KEIM Concretal W Grob
KEIM Concretal Lasur
KEIM Silan 100
KEIM PSS 20
KEIM protective concrete coatings – unique performance:

Generally, the goals of concrete repair/renovation/restoration often compete with the needs to achieve architectural aims or maintain certain elements of design. The grades of protection not only prevent further concrete decay but restore the appearance to achieve architectural aims.

The KEIM Concretal System provides effective mineral protection for concrete while retaining concrete’s mineral character and appearance.

KEIM Concretal W
Sol silicate opaque coating for all concrete surfaces
ASTM E 96, ASTM G 154, ASTM E 514
DIN EN 1062, DIN EN 1504

Grade of protection:
weathering resistance, water and chloride salt resistant, water repellent and chloride-proof with KEIM Silan 100

advantages:
• long life weathering protection lasts for decades
• surface consolidation by silicification: the sol silicate binder penetrates and chemically reacts with the substrate forming a micro-porous structure
• damp concrete dries out fast due to high vapor permeability (coating resists the equivalent pressure of a ¾” layer of air) hindering mold, mildew and fungus growth
• inorganic mineral coating has no elastomeric acrylics and is non-film forming remaining static-free so dirt is not attracted to the coating
• steel reinforcement is protected from water and chloride salts corrosion due to water repellency
• protection from freeze/thaw damage due to water resistance and vapor permeability
• protection from chloride salts corrosion already present in concrete due to absence of water transport—salts remain inactive
• absolutely lightfast using pure mineral pigments—color never fades
• mineral matte coating retains original concrete appearance
• simple to renovate - no stripping required for remediation
KEIM Concretal C
Sol silicate opaque CO₂ barrier coating for all concrete surfaces
ASTM E 96, ASTM G 154, ASTM E 514
DIN EN 1062, DIN EN 1504

Grade of protection:
weathering resistance, CO₂ barrier, water and chloride salt resistant, water repellent and chloride-proof with KEIM Silan 100

advantages:
• long life weathering protection lasts for decades
• protection from progressive carbonation due to elevated CO₂ tightness
• surface consolidation by silicification: the sol silicate binder penetrates and chemically reacts with the substrate forming a micro-porous structure
• damp concrete dries out fast due to high vapor permeability (coating resists the equivalent pressure of a 2-⅞” layer of air) hindering mold, mildew and fungus growth
• inorganic mineral coating has no elastomeric acrylics and is non-film forming remaining static-free so dirt is not attracted to the coating
• steel reinforcement is protected from water and chloride salts corrosion due to water repellency
• protection from freeze/thaw damage due to water resistance and vapor permeability
• protection from chloride salts corrosion already present in concrete due to absence of water transport—salts remain inactive
• absolutely lightfast using pure mineral pigments—color never fades
• mineral matte coating retains original concrete appearance
• simple to renovate - no stripping required for remediation

KEIM Concretal Lasur
Sol silicate opaque to translucent coating for fair-faced concrete surfaces
ASTM E 96, ASTM G 154, ASTM E 514
DIN EN 1062, DIN EN 1504 in combination with KEIM Silan 100

Grade of protection:
weathering resistance, water and chloride salt resistant, water repellent and chloride-proof with KEIM Silan 100

advantages:
• long life weathering protection
• perfect leveling of repair surfaces or fair-faced concrete surfaces with an uneven appearance
• surface consolidation by silicification: the sol silicate binder penetrates and chemically reacts with the substrate forming a micro-porous structure
• good water resistance when applied opaque or in combination with KEIM Silan 100
• damp concrete dries out fast due to high vapor permeability (coating resists the equivalent pressure of a ⅜” layer of air) hindering mold, mildew and fungus growth
• inorganic mineral coating has no elastomeric acrylics and is non-film forming remaining static-free so dirt is not attracted to the coating
• steel reinforcement is protected from water and chloride salts corrosion in combination with an underlying coat of KEIM Silan 100
• protection from freeze/thaw damage due to water resistance and vapor permeability
• protection from chloride salts corrosion already present in concrete in combination with underlying coat of KEIM Silan 100
• absolutely lightfast using pure mineral pigments—color never fades
• mineral matte coating retains original concrete appearance
• simple to renovate - no stripping required for remediation
the Concretal system approach for protection, beautification, renovation, and restoration.

KEIM Concretal W

KEIM Concretal Grob
KEIM Concretal Grob. A sol silicate highly filled priming coat containing sand (0-0.5mm grains) and mineral fiber fillers used to fill hairline cracks and crazing, opaque white, may be tinted. Dilute with KEIM Concretal Dilution. Very low VOC (less than 1 g/l).

KEIM Concretal Lasur
KEIM Concretal Lasur. Translucent sol silicate coating for fair-faced concrete appearance problems. The low pigment coating retains fair-faced appearances and surface textures while concealing optical imperfections and repairs using concrete shades of color. For weathering protection, Concretal Lasur is used in combination with KEIM Silan 100. At various dilutions, multiple decorative color wash effects are possible. Dilute prime and intermediate coats with KEIM Lasur Dilution, final coats with KEIM Concretal Dilution. Flat mineral matte finish. Very low VOC (less than 7 g/l).

KEIM Concretal C
KEIM Concretal C. Complete carbonation protection against gaseous CO₂ intrusion in concrete with good water vapor permeability. Protects against aggressive atmospheric pollutants. Untreated concrete must be pretreated with KEIM Silan 100 or pretreated in cases of very severe weathering or deicing salt exposure. Solvent-free, water dilutable, flat mineral matte finish. Very low VOC (less than 1 g/l).

KEIM Concretal Dilution
KEIM Concretal Dilution. A sol silicate-based diluent, used to thin coatings for smooth application and control absorption or as translucent base for lasur application. Use as primer coat to reduce absorption on highly absorbing substrates. Very low VOC (less than 1 g/l).

KEIM PSS 20
KEIM PSS 20. Eco-friendly completely reversible anti-graffiti/anti-soiling protection. Made completely of plant matter (polysaccharides). PSS 20 keeps graffiti, pollution and soiling off the underlying coating yet is highly vapor permeable. PSS 20 permits water penetration so protected metal artwork acquires a natural patina with complete protection from vandalism. Soiled coatings are removed with hot power-washing, then reapplied over damp surface. Matte finish, no VOC.

KEIM Bio Stripper

KEIM Sealer
KEIM Sealer. Polyurethane-based, solvent-free, indoor/outdoor UV resistant transparent sealer. Dries flat matte, one shade darker than underlying color. Uniquely 100% water resistant yet vapor permeable. Apply as protection layer on horizontal surfaces to prevent water intrusion. Due to slippery nature when wet, most soils wash away with rain. KEIM Sealer is an effective water protection and soil barrier. Very low VOC (less than 9 g/l).

KEIM SILAN 100
KEIM Silan 100. An alkylalkoxysilane-based, extremely water repellant primer coating with 100% active ingredients, applied as first coating against the substrate. No VOC.

KEIM Concrete Cleaner
KEIM Concrete Cleaner. A silicic acid cleaner for removing surface impurities on old concrete and mold release oils from new concrete. KEIM Concrete Cleaner is completely neutralized when used correctly. No VOC.
KEIM Concretal Mortar R
KEIM Concretal Mortar R. Technical coarse repair mortar for static and dynamically stressed concrete. Low shrinkage and crack-free hardening even if exposed to dynamic stress during application and setting time. Excellent resistance to carbonation, weather, environmental, and chemical influences. May be used on surfaces fit for traffic. Trowel or wet spray. No VOC.

KEIM Concretal MKH
KEIM Concretal MKH. Technical steel corrosion protection and bonding bridge. One-component mineral coating material for protecting cement-bound steel reinforcement against corrosion. Protects steel in concrete repair work, as a steel primer/bonding bridge for new engineered concrete and bridge construction, and a high bonding strength bridge for hand-finished rough mortar. No VOC.

KEIM Concretal Fine Filler
KEIM Concretal Fine Filler. Fine grain filler material for vertical fair-faced concrete surfaces. Use after repair with KEIM mortars and as a scratch filler to close pores and blow holes. May be applied by trowel or wet spray. Excellent resistance to weather, environmental, and chemical influences. No VOC.

KEIM Concretal Universal Mortar
KEIM Concretal Universal Mortar. Non-technical repair mortar for general repairs not requiring a technically-recognized repair specification. Use as combination corrosion protection, bonding bridge and repair mortar to fill voids with smooth finish similar to Concretal Fine Filler. For all around, non-technical, use. No VOC.

Need more information
Email us at: keim-info@keim.com
Download product spec sheet PDF files at: www.keim.com
Call us at:
866-906-5346 (In USA)
704-588-4811 (Outside USA)
KEIM Concretal concrete repair

Two proven systems are available for repairing areas of decay: a non-technical, easy-to-apply system and a repair system using the highest of technical standards. All products are slightly polymer-modified, cement-bound dry building materials that are mixed with clean water.

for concrete repairs using the highest technical standards

Tested for all repair applications and having a general technical approval test certificate, this system may be used in both industrial and building construction. The system components consist of: KEIM Concretal MKH (corrosion protection and bonding bridge), KEIM Concretal Mortar R (concrete replacement), and KEIM Concretal Fine Filler (leveling filler).

Concretal technical repair system

1. **preparation: chiseling out, exposing, rust removal**
 - **1.1** typical decay of inadequately protected concrete
 - **1.2** exposing corroded steel reinforcement
 - **1.3** cleaning the steel reinforcement by sand blasting with dry abrasive media

2. **flush out and match existing texture with KEIM Concretal Fine Filler on a slightly pre-wetted substrate.**

3. **Apply two protective coats of KEIM Concretal MKH to the cleaned reinforcement, allowing at least 3 hours to elapse between coats. Apply first coat immediately after rust removal.**

4. **Prewet the repair surfaces and then vigorously brush in KEIM Concretal MKH as bonding bridge.**

5. **Into the moist bonding bridge, fill the repair area with KEIM Concretal Mortar R. Layer thicknesses of 1/2” to 2” are possible, built up from multiple 1” layers.**

6. **Flush out and match existing texture with KEIM Concretal Fine Filler on a slightly pre-wetted substrate.**

7. **Apply two protective coats of KEIM Concretal C by brush, roller or airless spray. Layer thicknesses of 1/32” to 3/16” are possible.**
preparation: chiseling out, exposing, rust removal

for simple and reliable concrete repair

Make quick and reliable concrete repairs using only one high quality product. KEIM Concretal Universal Mortar provides corrosion protection with good adhesion without the need of a bonding bridge with a surface that can be smoothed similar to a filler. Areas of application include conventional building construction and lightweight concrete objects. KEIM Concretal Universal Mortar – one product for every job.

Concretal non-technical repair system

Fill defects with KEIM Concretal Universal Mortar in the pre-wetted substrate, use without specific corrosion protection and bonding bridge.

Layer thicknesses of ½” to 2” are possible, built up from multiple 1” layers. KEIM Concretal Universal Mortar can be directly smoothed flush to existing surfaces.

Clean surfaces, apply Concretal MKH, Mortar R, Fine Filler, and coat with Concretal C due to shallow placement of reinforcement.

Retaining wall. Clean surfaces, fill with Concretal Universal Mortar and coat with Concretal Grob to equalize surfaces with weathering protection.
The Concretal systematic approach for solving concrete problems

<table>
<thead>
<tr>
<th>application</th>
<th>product</th>
<th>functions</th>
<th>grades of protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>cleaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete Cleaner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bio Stripper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal MKH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal Mortar R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal Fine Filler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal Universal Mortar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water repellency</td>
<td>Lotexan N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>consolidation</td>
<td>Silan 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sealing</td>
<td>Concretal Dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sealer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal Lasur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coating systems</td>
<td>Concretal W Grob</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact Plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal Dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concretal C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Applied as water repellent top coat; 2) When used with Silan 100 as the base primer
textures are retained with the beauty and protection of Concretal
KEIM is known worldwide for quality and reliability in mineral architectural protection systems, and for more than 30 years for expertise and experience in the renovation, protection and beautification of concrete structures.

In recent decades, concrete projects of various types and scale have been restored, protected, and finished with the KEIM Concretal system.

ASTM E 96 Vapor Permeability, 77 perms
ASTM G 154 Accelerated Weathering Test, no change
ASTM E 514 Wind-Driven Rain Test, no water penetration

KEIM Concretal – mineral concrete repair and surface protection

Applicable MasterFormat™ Sections
09 90 00 Painting and Coating
09 91 13 Exterior Painting
09 96 00 High-Performance Coatings
09 96 13 Abrasion-Resistant Coatings
09 96 33 High-Temperature-Resistant Coatings
09 96 35 Chemical-Resistant Coatings
09 96 43 Fire-Retardant Coatings
09 96 66 Aggregate Wall Coatings
09 97 00 Special Coatings
09 97 23 Concrete and Masonry Coatings
09 97 26 Cementitious Coatings
09 97 26.13 Interior Cementitious Coatings
09 97 26.23 Exterior Cementitious Coatings

the original silicate coating since 1878